Heterogeneous Information Network Embedding for Recommendation
نویسندگان
چکیده
Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in recommender systems, called HIN based recommendation. It is challenging to develop effective methods for HIN based recommendation in both extraction and exploitation of the information from HINs. Most of HIN based recommendation methods rely on path based similarity, which cannot fully mine latent structure features of users and items. In this paper, we propose a novel heterogeneous network embedding based approach for HIN based recommendation, called HERec. To embed HINs, we design a meta-path based random walk strategy to generate meaningful node sequences for network embedding. The learned node embeddings are first transformed by a set of fusion functions, and subsequently integrated into an extended matrix factorization (MF) model. The extended MF model together with fusion functions are jointly optimized for the rating prediction task. Extensive experiments on three real-world datasets demonstrate the effectiveness of the HERec model. Moreover, we show the capability of the HERec model for the cold-start problem, and reveal that the transformed embedding information from HINs can improve the recommendation performance.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملRecommendation in Context-Rich Environment: An Information Network Analysis Approach
Recommendation has received tremendous attention recently due to its wide and successful applications across different domains. Different from traditional setting of recommendation tasks, modern recommendation tasks are usually exposed in a context-rich environment. For example, in addition to a user-item rating matrix, users and items are connected to other objects via different relationships ...
متن کاملSteganalysis of embedding in difference of image pixel pairs by neural network
In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.10730 شماره
صفحات -
تاریخ انتشار 2017